我发现猫眼有个移动端某页接口,获取的json的,获取数据也是更新的,链接:http://piaofang.maoyan.com/getBoxList?date=1&isSplit=true,去掉接口后你会发现就是字体加密反爬的猫眼专业版,数据就是json格式
我们就利用json模块进行抓取这个网页数据存入csv做数据可视化
我们先发送请求获取数据
- class Maoyan(object):
- # 初始化数据
- def __init__(self):
- self.url = 'http://piaofang.maoyan.com/getBoxList?date=1&isSplit=true'
- self.header = {
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
- 'Chrome/87.0.4280.88 Safari/537.36 '
- }
-
- # 获取数据
- def get_data(self):
- response = requests.get(url=self.url, headers=self.header)
- return response.content
-
我们直接返回content,接下来就是解析数据,我们就把这个content,用json模块解析,loads一个字典方便取值:
- # 解析数据
- def parse_data(self, response):
- data = json.loads(response)
- data_list = data['boxOffice']["data"]["list"]
- datas = list()
- for main_data in data_list:
- temp = {}
- temp["电影ID"] = main_data['movieInfo']["movieId"]
- temp["电影名称"] = main_data['movieInfo']["movieName"]
- temp["综合票房"] = main_data['sumBoxDesc']
- temp["综合票房占比"] = main_data['boxRate']
- temp["排片占比"] = main_data['showCountRate']
- temp["排坐占比"] = main_data['seatCountRate']
- datas.append(temp)
- return datas
-
最后我们保存csv,后续我们进行数据可视化,先保存,代码如下:
- def save_data(self, datas):
- for data in datas:
- csv_writer.writerow([data["电影ID"], data["电影名称"], data["综合票房"], data["综合票房占比"], data["排片占比"], data["排坐占比"]])
-
整体代码如下:
- import requests
- import json
- import csv
-
-
- class Maoyan(object):
- # 初始化数据
- def __init__(self):
- self.url = 'http://piaofang.maoyan.com/getBoxList?date=1&isSplit=true'
- self.header = {
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
- 'Chrome/87.0.4280.88 Safari/537.36 '
- }
-
- # 获取数据
- def get_data(self):
- response = requests.get(url=self.url, headers=self.header)
- return response.content
-
- # 解析数据
- def parse_data(self, response):
- data = json.loads(response)
- data_list = data['boxOffice']["data"]["list"]
- datas = list()
- for main_data in data_list:
- temp = {}
- temp["电影ID"] = main_data['movieInfo']["movieId"]
- temp["电影名称"] = main_data['movieInfo']["movieName"]
- temp["综合票房"] = main_data['sumBoxDesc']
- temp["综合票房占比"] = main_data['boxRate']
- temp["排片占比"] = main_data['showCountRate']
- temp["排坐占比"] = main_data['seatCountRate']
- datas.append(temp)
- return datas
-
- # 保存数据
- def save_data(self, datas):
- for data in datas:
- csv_writer.writerow([data["电影ID"], data["电影名称"], data["综合票房"], data["综合票房占比"], data["排片占比"], data["排坐占比"]])
-
- def run(self):
- response = self.get_data()
- datas = self.parse_data(response)
- self.save_data(datas)
-
-
- if __name__ == '__main__':
- head = ["电影ID", "电影名称", "综合票房", "综合票房占比", "排片占比", "排坐占比"]
- with open('猫眼.csv', 'a', newline='', encoding="gb18030") as f:
- csv_writer = csv.writer(f)
- csv_writer.writerow(head)
- maoyan = Maoyan()
- maoyan.run()
-
-
由于票房单位不统一,我们存下来的csv,我就手动修改了下,单位不用,有的亿,有的万,这里我就直接用excel进行修改了,把亿全修改成了万单位
我们用matplotlib,pandas, numpy 模块进行数据可视化,先读取数据
- import matplotlib.pyplot as plt
- import pandas as pd
- import numpy as np
-
- movie = pd.read_csv("./movie.csv",encoding = "gbk",index_col=0)
-
获取电影名称
- movie_name = movie["电影名称"].values
-
这里我们获取下电影的个数,因为使用matplotlib绘图的时候,x_ticks,y_ticks不能以文字开头
- num = int(len(movie_name))
-
获取票房那一列
- movie_num = movie["综合票房"].values
-
绘制柱状图
- movie_name = movie_name
- x = range(len(movie_name))
- y = movie_num
- plt.figure(figsize=(20,15),dpi=100)
- plt.bar(x, y, width=0.8, color=['b','r','g','y','c','m','y','k','c','g','b'],align="center")
- plt.xticks(x,movie_name,fontsize=12,rotation=-90)
-
- plt.grid(linestyle="--", alpha=0.5)
- plt.title("2020年12月电影票房收入对比",fontsize=25)
- plt.xlabel("票房名称",fontsize=28)
- plt.ylabel("电影数量",fontsize=25)
- plt.savefig('./2.png')
- plt.show()
-
横向柱状图
- movie_name = movie_name
- x = range(len(movie_name))
- y = movie_num
- plt.figure(figsize=(20,8),dpi=100)
- plt.barh(x, y, color=['b','r','g','y','c','m','y','k','c','g','b'],align="center",height=0.8)
- plt.yticks(x,movie_name,fontsize=15)
-
- plt.grid(linestyle="-.", alpha=0.5)
- plt.title("2020年12月电影院票房统计",fontsize=24)
- plt.xlabel("票房数量",fontsize=28)
- plt.ylabel("电影名称",fontsize=25)
- plt.savefig("./1.png")
- plt.show()
-
饼状图
-
- movie_name = movie_name
- labels = range(len(movie_name))
- x = movie_num
- color=['#336633','#CCCC00','#0066CC','#CC0033','#003399','#CC99CC','#333366','#FFFF66','#6699CC','#FF6600','#CC6600']
- plt.figure(figsize=(15,14),dpi=100)
- patches,l_text,p_text = plt.pie(x,labels=movie_name,autopct="%1.2f%%",startangle=100,pctdistance=0.7,radius=1,colors=color,explode=(0.1,0,0,0,0,0,0,0,0,0.2,0,0,0,0.2,0,0,0,0.3,0.3,0.2,0,0.2,0.1,0,0.05))
- for l in l_text:
- l.set_size(10)
- for p in p_text:
- p.set_size(5)
- plt.grid()
- plt.legend(loc=1,ncol=2)
- plt.title("2020年12月各电影占比",fontsize=28)
- plt.savefig("./3.png")
- plt.show()
-
-
我把电影名称单独拿出来了,保存到了txt,对电影名称生成词云
- import jieba
- import matplotlib.pyplot as plt
- from wordcloud import WordCloud
-
- with open('./词云.txt','r',encoding="utf-8") as f:
- data = f.read()
- data_list = jieba.cut(data,cut_all=True)
- data_text = ','.join(data_list)
- wordcloud = WordCloud(
- font_path=r'./msyh.ttc',
- background_color="white",width=1000,height=1000
- ).generate(data_text)
- plt.imshow(wordcloud,interpolation="bilinear")
- plt.axis("off")
- plt.savefig('./2.jpg')
- plt.show()
-
生成词云