单向散列算法,又称hash函数,Hash哈希函数(也称杂凑算法)就是把任意长的输入消息串变化成固定长的输出串的一种函数,该过程是不可逆的。Hash函数可用于数字签名、消息的完整性检测、消息起源的认证检测等。较为常用的方法包括MD算法和SHA算法。
MD系列算法分为MD2、MD4、MD5三种算法,最常用的是MD5版本算法,用来把不同长度的数据块进行暗码运算成一个128位的散列值(hash value),用于确保信息传输完整一致。
应用场景:嵌入式系统开发中,MD5一般用于校验文件的完整性,如通过网络下载的文件,可能缺少部分或者被篡改,通过计算实际接收文件的MD5码,与原始MD5比较,判断文件是否正确。在密码存储方面,将用户输入的明文密码转成MD5码保存,后期应用只匹配比较MD5码,这样即使后台管理员也无法查看到真实密码。
SHA是一个密码散列函数家族,SHA算法主要分为SHA-1、SHA-2、SHA-3 三大类,一般使用SHA-2算法,主要有SHA-256、SHA-512、SHA-224、SHA-384四种,对于嵌入式一般选择SHA256,将任意长度的输入压缩成256位,且哈希碰撞的概率近乎为0。
应用场景:数字签名、数字时间戳、数字证书。
对称加密算法是为了保证数据的机密性,hash算法是为了验证数据的完整性,而MAC算法既可以验证数据的完整性,又可以验证数据是否被篡改。似乎嵌入式开发种少见。
一般嵌入式系统签名或者校验复杂版使用SHA256,也就是长度小于2^64字节的任意数据,经过哈希运算得到256比特的消息摘要。
SHA256源码如下:
- #include "stdlib.h"
-
- //sha256.h
- #define SHA256_BLOCK_SIZE 32 //SHA 256bits = 32Bytes
-
- typedef unsigned char uint8_t;
- typedef unsigned int uint32_t;
-
- typedef struct
- {
- uint8_t data[64];
- uint32_t datalen;
- unsigned long long bitlen;
- uint32_t state[8];
- } sha256_ctx_t;
-
- //api
- extern void sha256_init(sha256_ctx_t *ctx);
- extern void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len);
- extern void sha256_final(sha256_ctx_t *ctx, uint8_t hash[]);
-
- //sha256.c
- /****************************** MACROS ******************************/
- #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
- #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
-
- #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
- #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
- #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
- #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
- #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
- #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
-
- /**************************** VARIABLES *****************************/
- static const uint32_t k[64] =
- {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
-
-
- static void sha256_transform(sha256_ctx_t *ctx, const uint8_t data[])
- {
- uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
-
- for(i = 0, j = 0; i < 16; ++i, j += 4)
- {
- m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
- }
- for(; i < 64; ++i)
- {
- m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
- }
-
- a = ctx->state[0];
- b = ctx->state[1];
- c = ctx->state[2];
- d = ctx->state[3];
- e = ctx->state[4];
- f = ctx->state[5];
- g = ctx->state[6];
- h = ctx->state[7];
-
- for(i = 0; i < 64; ++i)
- {
- t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
- t2 = EP0(a) + MAJ(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + t1;
- d = c;
- c = b;
- b = a;
- a = t1 + t2;
- }
-
- ctx->state[0] += a;
- ctx->state[1] += b;
- ctx->state[2] += c;
- ctx->state[3] += d;
- ctx->state[4] += e;
- ctx->state[5] += f;
- ctx->state[6] += g;
- ctx->state[7] += h;
- }
-
- void sha256_init(sha256_ctx_t *ctx)
- {
- ctx->datalen = 0;
- ctx->bitlen = 0;
- ctx->state[0] = 0x6a09e667;
- ctx->state[1] = 0xbb67ae85;
- ctx->state[2] = 0x3c6ef372;
- ctx->state[3] = 0xa54ff53a;
- ctx->state[4] = 0x510e527f;
- ctx->state[5] = 0x9b05688c;
- ctx->state[6] = 0x1f83d9ab;
- ctx->state[7] = 0x5be0cd19;
- }
-
- void sha256_update(sha256_ctx_t *ctx, const uint8_t data[], uint32_t len)
- {
- uint32_t i;
-
- for(i = 0; i < len; ++i)
- {
- ctx->data[ctx->datalen] = data[i];
- ctx->datalen++;
- if(ctx->datalen == 64)
- {
- sha256_transform(ctx, ctx->data);
- ctx->bitlen += 512;
- ctx->datalen = 0;
- }
- }
- }
-
- void sha256_final(sha256_ctx_t *ctx, uint8_t hash[])
- {
- uint32_t i;
-
- i = ctx->datalen;
-
- // Pad whatever data is left in the buffer.
- if(ctx->datalen < 56)
- {
- ctx->data[i++] = 0x80;
- while(i < 56)
- {
- ctx->data[i++] = 0x00;
- }
- }
- else
- {
- ctx->data[i++] = 0x80;
- while(i < 64)
- {
- ctx->data[i++] = 0x00;
- }
- sha256_transform(ctx, ctx->data);
- memset(ctx->data, 0, 56);
- }
-
- // Append to the padding the total message's length in bits and transform.
- ctx->bitlen += ctx->datalen * 8;
- ctx->data[63] = ctx->bitlen;
- ctx->data[62] = ctx->bitlen >> 8;
- ctx->data[61] = ctx->bitlen >> 16;
- ctx->data[60] = ctx->bitlen >> 24;
- ctx->data[59] = ctx->bitlen >> 32;
- ctx->data[58] = ctx->bitlen >> 40;
- ctx->data[57] = ctx->bitlen >> 48;
- ctx->data[56] = ctx->bitlen >> 56;
- sha256_transform(ctx, ctx->data);
-
- // Since this implementation uses little endian byte ordering and SHA uses big endian,
- // reverse all the bytes when copying the final state to the output hash.
- for(i = 0; i < 4; ++i)
- {
- hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
- hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
- }
- }
- /***********************************************************************/
- //test
- void log(char *head, uint8_t *data, uint8_t len)
- {
- uint8_t i;
- printf("%s:", head);
- for(i = 0; i < len; i++)
- {
- printf("%02X ", data[i]);
- }
- printf("\r\n");
- }
-
- int main(int argc, char *argv[])
- {
- uint8_t buff1[] = {"embedded-system"};
- uint8_t buff2[] = {0x00, 0x65, 0x00, 0x6D, 0x00, 0x62, 0x00, 0x65, 0x00, 0x64, 0x00, 0x64, 0x00, 0x65, \
- 0x00, 0x64, 0x00, 0x2D, 0x00, 0x73, 0x00, 0x79, 0x00, 0x73, 0x00, 0x74, 0x00, 0x65, 0x00, 0x6D
- };
- uint8_t sha256_result[32] = {0};
-
- sha256_ctx_t sha;
- sha256_init(&sha);
- sha256_update(&sha, buff1, strlen(buff1));
- sha256_final(&sha, sha256_result);
- log("buff1 sha256", sha256_result, 32);
-
- sha256_init(&sha);
- sha256_update(&sha, buff2, sizeof(buff2));
- sha256_final(&sha, sha256_result);
- log("buff2 sha256", sha256_result, 32);
-
- sha256_init(&sha);
- sha256_update(&sha, buff1, strlen(buff1));
- sha256_update(&sha, buff1, strlen(buff1));
- sha256_update(&sha, buff1, strlen(buff1));
- sha256_final(&sha, sha256_result);
- log("buff1*3 sha256", sha256_result, 32);
-
- return 0;
- }
-
对嵌入式系统,在RAM空间有限的情况下,对较长的数据进行运算,SHA256是可以分段多次传入数据的。如上使用范例第3段所示。一般用于校验密钥或者文件是否传输错误或者被篡改。
一般嵌入式系统使用的单向散列函数是MD5和SHA256。两者都是实现对任意长度输入,经运算输出固定长度的摘要数据。
无限多可能的输入数据转换成了数量有限的输出值,理论上是会出现两个不同的输入值运算结果相同,这种情况称为碰撞,即不同的消息产生同一个散列值的情况。
MD5是输出128比特的散列值,而SHA256是256比特;可见SHA256的安全性略高,但其运算耗时也多。
具体应用选择哪种并没太严格的标准。