为什么要提倡 Design Pattern 呢?根本原因是为了代码复用,增加可维护性。那么怎么才能实现代码复用呢?
面向对象有几个原则:
开闭原则具有理想主义的色彩,它是面向对象设计的终极目标。其他几条,则可以看做是开闭原则的实现方法。设计模式就是实现了这些原则,从而达到了代码复用、增加可维护性的目的。
开闭原则是面向对象的可复用设计的第一块基石,它是最重要的面向对象设计原则。开闭原则由 Bertrand Meyer 于1988年提出,其定义如下:
里氏代换原则由2008年图灵奖得主、美国第一位计算机科学女博士 Barbara Liskov 教授和卡内基 · 梅隆大学 Jeannette Wing 教授于1994年提出。其严格表述如下:
如果对每一个类型为S的对象o1,都有类型为T的对象o2,使得以T定义的所有程序P在所有的对象o1代换o2时,程序P的行为没有变化,那么类型S是类型T的子类型。这个定义比较拗口且难以理解,因此我们一般使用它的另一个通俗版定义:
如果说开闭原则是面向对象设计的目标的话,那么依赖倒转原则就是面向对象设计的主要实现机制之一,它是系统抽象化的具体实现。依赖倒转原则是Robert C. Martin在1996年为“C++Reporter”所写的专栏Engineering Notebook的第三篇,后来加入到他在2002年出版的经典著作“Agile Software Development, Principles, Patterns, and Practices”一书中。依赖倒转原则定义如下:
依赖倒转原则(Dependency Inversion Principle, DIP):抽象不应该依赖于细节,细节应当依赖于抽象。换言之,要针对接口编程,而不是针对实现编程。
依赖倒转原则要求我们在程序代码中传递参数时或在关联关系中,尽量引用层次高的抽象层类,即使用接口和抽象类进行变量类型声明、参数类型声明、方法返回类型声明,以及数据类型的转换等,而不要用具体类来做这些事情。为了确保该原则的应用,一个具体类应当只实现接口或抽象类中声明过的方法,而不要给出多余的方法,否则将无法调用到在子类中增加的新方法。
在引入抽象层后,系统将具有很好的灵活性,在程序中尽量使用抽象层进行编程,而将具体类写在配置文件中,这样一来,如果系统行为发生变化,只需要对抽象层进行扩展,并修改配置文件,而无须修改原有系统的源代码,在不修改的情况下来扩展系统的功能,满足开闭原则的要求。
在实现依赖倒转原则时,我们需要针对抽象层编程,而将具体类的对象通过依赖注入(DependencyInjection, DI)的方式注入到其他对象中,依赖注入是指当一个对象要与其他对象发生依赖关系时,通过抽象来注入所依赖的对象。常用的注入方式有三种,分别是:构造注入,设值注入(Setter注入)和接口注入。构造注入是指通过构造函数来传入具体类的对象,设值注入是指通过Setter方法来传入具体类的对象,而接口注入是指通过在接口中声明的业务方法来传入具体类的对象。这些方法在定义时使用的是抽象类型,在运行时再传入具体类型的对象,由子类对象来覆盖父类对象。
接口隔离原则定义如下:
接口隔离原则(Interface Segregation Principle, ISP):使用多个专门的接口,而不使用单一的总接口,即客户端不应该依赖那些它不需要的接口。
根据接口隔离原则,当一个接口太大时,我们需要将它分割成一些更细小的接口,使用该接口的客户端仅需知道与之相关的方法即可。每一个接口应该承担一种相对独立的角色,不干不该干的事,该干的事都要干。这里的“接口”往往有两种不同的含义:一种是指一个类型所具有的方法特征的集合,仅仅是一种逻辑上的抽象;另外一种是指某种语言具体的“接口”定义,有严格的定义和结构,比如Java语言中的interface。对于这两种不同的含义,ISP的表达方式以及含义都有所不同:
合成复用原则又称为组合/聚合复用原则(Composition/Aggregate Reuse Principle, CARP),其定义如下:
合成复用原则(Composite Reuse Principle, CRP):尽量使用对象组合,而不是继承来达到复用的目的。
合成复用原则就是在一个新的对象里通过关联关系(包括组合关系和聚合关系)来使用一些已有的对象,使之成为新对象的一部分;新对象通过委派调用已有对象的方法达到复用功能的目的。简言之:复用时要尽量使用组合/聚合关系(关联关系),少用继承。
在面向对象设计中,可以通过两种方法在不同的环境中复用已有的设计和实现,即通过组合/聚合关系或通过继承,但首先应该考虑使用组合/聚合,组合/聚合可以使系统更加灵活,降低类与类之间的耦合度,一个类的变化对其他类造成的影响相对较少;其次才考虑继承,在使用继承时,需要严格遵循里氏代换原则,有效使用继承会有助于对问题的理解,降低复杂度,而滥用继承反而会增加系统构建和维护的难度以及系统的复杂度,因此需要慎重使用继承复用。
通过继承来进行复用的主要问题在于继承复用会破坏系统的封装性,因为继承会将基类的实现细节暴露给子类,由于基类的内部细节通常对子类来说是可见的,所以这种复用又称“白箱”复用,如果基类发生改变,那么子类的实现也不得不发生改变;从基类继承而来的实现是静态的,不可能在运行时发生改变,没有足够的灵活性;而且继承只能在有限的环境中使用(如类没有声明为不能被继承)。
迪米特法则来自于1987年美国东北大学(Northeastern University)一个名为“Demeter”的研究项目。迪米特法则又称为最少知识原则(LeastKnowledge Principle, LKP),其定义如下:
迪米特法则(Law of Demeter, LoD):一个软件实体应当尽可能少地与其他实体发生相互作用。
如果一个系统符合迪米特法则,那么当其中某一个模块发生修改时,就会尽量少地影响其他模块,扩展会相对容易,这是对软件实体之间通信的限制,迪米特法则要求限制软件实体之间通信的宽度和深度。迪米特法则可降低系统的耦合度,使类与类之间保持松散的耦合关系。
迪米特法则还有几种定义形式,包括:不要和“陌生人”说话、只与你的直接朋友通信等,在迪米特法则中,对于一个对象,其朋友包括以下几类:
任何一个对象,如果满足上面的条件之一,就是当前对象的“朋友”,否则就是“陌生人”。在应用迪米特法则时,一个对象只能与直接朋友发生交互,不要与“陌生人”发生直接交互,这样做可以降低系统的耦合度,一个对象的改变不会给太多其他对象带来影响。
迪米特法则要求我们在设计系统时,应该尽量减少对象之间的交互,如果两个对象之间不必彼此直接通信,那么这两个对象就不应当发生任何直接的相互作用,如果其中的一个对象需要调用另一个对象的某一个方法的话,可以通过第三者转发这个调用。简言之,就是通过引入一个合理的第三者来降低现有对象之间的耦合度。
在将迪米特法则运用到系统设计中时,要注意下面的几点:在类的划分上,应当尽量创建松耦合的类,类之间的耦合度越低,就越有利于复用,一个处在松耦合中的类一旦被修改,不会对关联的类造成太大波及;在类的结构设计上,每一个类都应当尽量降低其成员变量和成员函数的访问权限;在类的设计上,只要有可能,一个类型应当设计成不变类;在对其他类的引用上,一个对象对其他对象的引用应当降到最低。
说明:严格来说,简单工厂模式不是GoF总结出来的23种设计模式之一。
| 模式名称 | 使用频率 | 学习难度 |
|---|---|---|
| 工厂方法模式 Factory Method Pattern | ★★★★★ | ★★☆☆☆ |
| 抽象工厂模式 Abstract Factory Pattern | ★★★★★ | ★★★★☆ |
| 单例模式 Singleton Pattern | ★★★★☆ | ★☆☆☆☆ |
| 简单工厂模式 Simple Factory Pattern | ★★★☆☆ | ★★☆☆☆ |
| 原型模式 Prototype Pattern | ★★★☆☆ | ★★★☆☆ |
| 建造者模式 Builder Pattern | ★★☆☆☆ | ★★★★☆ |
| 模式名称 | 使用频率 | 学习难度 |
|---|---|---|
| 外观模式 Facade Pattern | ★★★★★ | ★☆☆☆☆ |
| 适配器模式 Adapter Pattern | ★★★★☆ | ★★☆☆☆ |
| 代理模式 Proxy Pattern | ★★★★☆ | ★★★☆☆ |
| 组合模式 Composite Pattern | ★★★★☆ | ★★★☆☆ |
| 桥接模式 Bridge Pattern | ★★★☆☆ | ★★★☆☆ |
| 装饰模式 Decorator Pattern | ★★★☆☆ | ★★★☆☆ |
| 享元模式 Flyweight Pattern | ★☆☆☆☆ | ★★★★☆ |
| 模式名称 | 使用频率 | 学习难度 |
|---|---|---|
| 迭代器模式 Iterator Pattern | ★★★★★ | ★★★☆☆ |
| 观察者模式 Observer Pattern | ★★★★★ | ★★★☆☆ |
| 策略模式 Strategy Pattern | ★★★★☆ | ★☆☆☆☆ |
| 命令模式 Command Pattern | ★★★★☆ | ★★★☆☆ |
| 状态模式 State Pattern | ★★★☆☆ | ★★★☆☆ |
| 模板方法模式 Template Method Pattern | ★★★☆☆ | ★★☆☆☆ |
| 职责链模式 Chain of Responsibility Pattern | ★★☆☆☆ | ★★★☆☆ |
| 中介者模式 Mediator Pattern | ★★☆☆☆ | ★★★☆☆ |
| 备忘录模式 Memento Pattern | ★★☆☆☆ | ★★☆☆☆ |
| 解释器模式 Interpreter Pattern | ★☆☆☆☆ | ★★★★★ |
| 访问者模式 Visitor Pattern | ★☆☆☆☆ | ★★★★☆ |
还有一个模式叫复合模式,复合模式在一个解决方案中结合两个或多个模式,以解决一般或重复发生的问题。


