NumPy是Python中最流行的用于科学计算和数据分析的库之一。下面是常用的50个NumPy方法和函数,每个方法都有一个简单的示例:
import numpy as np
a = np.zeros((2, 3))
print(a)
# Output: [[0. 0. 0.]
# [0. 0. 0.]]
import numpy as np
a = np.ones((2, 3))
print(a)
# Output: [[1. 1. 1.]
# [1. 1. 1.]]
import numpy as np
a = np.empty((2, 3))
print(a)
# Output: [[2.12199579e-314 2.12199579e-314 2.12199579e-314]
# [2.12199579e-314 2.12199579e-314 2.12199579e-314]]
import numpy as np
a = np.arange(0, 10, 2)
print(a)
# Output: [0 2 4 6 8]
import numpy as np
a = np.linspace(0, 1, 5)
print(a)
# Output: [0. 0.25 0.5 0.75 1. ]
import numpy as np
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.reshape(a, (2, 3))
print(b)
# Output: [[1 2 3]
# [4 5 6]]
import numpy as np
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.transpose(a)
print(b)
# Output: [[1 3 5]
# [2 4 6]]
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
c = np.concatenate((a, b), axis=1)
print(c)
# Output: [[1 2 5 6]
# [3 4 7 8]]
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.vstack((a, b))
print(c)
# Output: [[1 2 3]
# [4 5 6]]
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.hstack((a, b))
print(c)
# Output: [1 2 3 4 5 6]
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
b = np.split(a, 3)
print(b)
# Output: [array([1, 2]), array([3, 4]), array([5, 6])]
import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.hsplit(a, 3)
print(b)
# Output: [array([[1],
# [4]]), array([[2],
# [5]]), array([[3],
# [6]])]
import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.vsplit(a, 2)
print(b)
# Output: [array([[1, 2, 3]]), array([[4, 5, 6]])]
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.ravel(a)
print(b)
# Output: [1 2 3 4]
import numpy as np
a = np.array([1, 2, 3])
b = np.max(a)
print(b)
# Output: 3
import numpy as np
a = np.array([1, 2, 3])
b = np.min(a)
print(b)
# Output: 1
import numpy as np
a = np.array([1, 2, 3])
b = np.mean(a)
print(b)
# Output: 2.0
import numpy as np
a = np.array([1, 2, 3])
b = np.median(a)
print(b)
# Output: 2.0
import numpy as np
a = np.array([1, 2, 3])
b = np.std(a)
print(b)
# Output: 0.816496580927726
import numpy as np
a = np.array([1, 2, 3])
b = np.var(a)
print(b)
# Output: 0.6666666666666666
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.dot(a, b)
print(c)
# Output: 32
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
c = np.matmul(a, b)
print(c)
# Output: [[19 22]
# [43 50]]
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.trace(a)
print(b)
# Output: 5
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.linalg.det(a)
print(b)
# Output: -2.0
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.linalg.inv(a)
print(b)
# Output: [[-2. 1. ]
# [ 1.5 -0.5]]

