整数对象在 Python 内部用 PyIntObject 结构体表示:
- typedef struct {
- PyObject_HEAD
- long ob_ival;
- } PyIntObject;
-
PyObject_HEAD 宏中定义的两个属性分别是:
- int ob_refcnt;
- struct _typeobject *ob_type;
-
这两个属性是所有 Python 对象固有的:
由此看来 PyIntObject 就是一个对 C 语言中 long 类型的数值的扩展,出于性能考虑,对于小整数,Python使用小整数对象池 small_ints 缓存了[-5,257)之间的整数,该范围内的整数在 Python 系统中是共享的。
- #define NSMALLPOSINTS 257
- #define NSMALLNEGINTS 5
- static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
-
而超过该范围的整数即使值相同,但对象不一定是同一个,如下所示:当a与b的值都是10000,但并不是同一个对象,而值为1的时候,a和b属于同一个对象。
- >>> a = 10000
- >>> b = 10000
- >>> print a is b
- False
- >>> a = 1
- >>> b = 1
- >>> print a is b
- True
-
对于超出了[-5, 257)之间的其他整数,Python同样提供了专门的缓冲池,供这些所谓的大整数使用,避免每次使用的时候都要不断的malloc分配内存带来的效率损耗。这块内存空间就是PyIntBlock。
- struct _intblock {
-
- struct _intblock *next;
- PyIntObject objects[N_INTOBJECTS];
- };
- typedef struct _intblock PyIntBlock;
-
- static PyIntBlock *block_list = NULL;
- static PyIntObject *free_list = NULL;
-
这些内存块(PyIntBlock)通过一个单向链表组织在一起,表头是block_list,表头始终指向最新创建的PyIntBlock对象。
PyIntBlock 有两个属性:next,objects。next 指针指向下一个PyIntBlock对象,objects是一个PyIntObject数组(最终会转变成单向链表),它是真正用于存储被缓存的PyIntObjet对象的内存空间。
free_list 单向链表是所有PyIntBlock内存块中空闲的内存。所有空闲内存通过一个链表组织起来的好处就是在Python需要新的内存来存储新的PyIntObject对象时,能够通过free_list快速获得所需的内存。
创建一个整数对象时,如果它在小整数范围内,就直接从小整数缓冲池中直接返回,如果不在该范围内,就开辟一个大整数缓冲池内存空间:
- [intobject.c]
- PyObject* PyInt_FromLong(long ival)
- {
- register PyIntObject *v;
- #if NSMALLNEGINTS + NSMALLPOSINTS > 0
- //[1] :尝试使用小整数对象池
- if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
- v = small_ints[ival + NSMALLNEGINTS];
- Py_INCREF(v);
- return (PyObject *) v;
- }
- #endif
- //[2] :为通用整数对象池申请新的内存空间
- if (free_list == NULL) {
- if ((free_list = fill_free_list()) == NULL)
- return NULL;
- }
- //[3] : (inline)内联PyObject_New的行为
- v = free_list;
- free_list = (PyIntObject *)v->ob_type;
- PyObject_INIT(v, &PyInt_Type);
- v->ob_ival = ival;
- return (PyObject *) v;
- }
-
fill_free_list就是创建大整数缓冲池内存空间的逻辑,该函数返回一个free_list链表,当整数对象ival创建成功后,free_list表头就指向了v->ob_type,ob_type不是所有Python对象中表示类型信息的字段吗?怎么在这里作为一个连接指针呢?这是Python在性能与代码优雅之间取中庸之道,对名称的滥用,放弃了对类型安全的坚持。把它理解成指向下一个PyIntObject的指针即可。
- [intobject.c]
- static PyIntObject* fill_free_list(void)
- {
- PyIntObject *p, *q;
- // 申请大小为sizeof(PyIntBlock)的内存空间
- // block list始终指向最新创建的PyIntBlock
- p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
- ((PyIntBlock *)p)->next = block_list;
- block_list = (PyIntBlock *)p;
-
- //:将PyIntBlock中的PyIntObject数组(objects)转变成单向链表
- p = &((PyIntBlock *)p)->objects[0];
- q = p + N_INTOBJECTS;
- while (--q > p)
- // ob_type指向下一个未被使用的PyIntObject。
- q->ob_type = (struct _typeobject *)(q-1);
- q->ob_type = NULL;
- return p + N_INTOBJECTS - 1;
- }
-
不同的PyIntBlock里面的空闲的内存是怎样连接起来构成free_list的呢?这个秘密放在了整数对象垃圾回收的时候,在PyIntObject对象的tp_dealloc操作中可以看到:
- [intobject.c]
- static void int_dealloc(PyIntObject *v)
- {
- if (PyInt_CheckExact(v)) {
- v->ob_type = (struct _typeobject *)free_list;
- free_list = v;
- }
- else
- v->ob_type->tp_free((PyObject *)v);
- }
-
原来 PyIntObject 对象销毁时,它所占用的内存并不会释放,而是继续被 Python 使用,进而将free_list表头指向了这个要被销毁的对象上。